An Empirical Analysis of Information Filtering Methods
نویسنده
چکیده
The growth in the the number of news articles, blogs, images, and videos available on the Web is making if more challenging for people to find potentially useful information People have relied on search engines to satisfy their short-term needs, such as finding the telephone number for a restaurant; however, these systems have not been designed to support long-term needs, such as the research interests of academics. One approach to supporting long-term needs is to use an Information Filtering system to select potentially useful information from the vast amount being produced everyday. The similarities between Information Retrieval systems and Information Filtering systems are well-established. They have prompted the use of retrieval models and methods in filtering systems, which has had some success but has been criticised as a limiting factor due to the unique challenges of document filtering. A significant difference between these systems is the use case: a filtering system is intended to push information to the user over a period of time, whereas a retrieval system is intended for the user to pull information to themselves for immediate use. The main challenge that needs to be addressed by a filtering system is the transient nature of the information published on the Web and the drifting nature of information needs. These factors lead to an uncertain interplay between the components comprising a filtering system and this thesis presents an empirical analysis of how the main system components affect performance. The analysis explores the role of each system component independently and in conjunction with other components. The main contribution of this thesis is a deeper understanding of how different components affect performance and the interplay between these components. The outcome of this thesis intends to act as a guide for both practitioners and researchers interested in overcoming some of the challenges of building filtering systems.
منابع مشابه
Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملData envelopment analysis in service quality evaluation: an empirical study
Service quality is often conceptualized as the comparison between service expectations and the actual performance perceptions. It enhances customer satisfaction, decreases customer defection, and promotes customer loyalty. Substantial literature has examined the concept of service quality, its dimensions, and measurement methods. We introduce the perceived service quality index (PSQI) as a sing...
متن کاملEmpirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملPersonality-Aware Collaborative Filtering: An Empirical Study in Multiple Domains with Facebook Data
In this paper we investigate the incorporation of information about the users’ personality into a number of collaborative filtering methods, aiming to address situations of user preference scarcity. Through empirical experiments on a multi-domain dataset obtained from Facebook, we show that the proposed personality-aware collaborative filtering methods effectively –and consistently in the studi...
متن کامل